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ON THE MULTIPLICATIVE STRUCTURE
OF THE DE RHAM THEORY

V. K. A. M. GUGENHEIM

Let & denote either the category of C=-manifolds (possibly with boundaries
and corners) and C~-maps, or that of simplical complexes and simplicial maps.
Let ¥~ denote the category of graded differential vector spaces over the reals or
the rationals, and let 4*: 9 — ¥~ denote either the classical de Rham functor
of differential forms, or Sullivan’s functor of rational differential forms; cf.
[4]. By C*: 9 — ¥ we denote, in the two cases, the functor of either normal-
ized singular differentiable cochains or normalized simplicial cochains. The
differentiable cochain (or chain) functor is homology equivalent to the usual
(continuous) singular functors. This is well-known ; for a proof see, for instance,
[7, 191-200].

The transformation of functors

p: A* — C*

is defined by

.

where ¢ is any singular (or simplicial) chain. The de Rham theorem says, in
either case, that p induces a homology isomorphism. Additionaily, the theorem
asserts that the isomorphism

H(p): H(A*) — H(C¥)

is a map of algebras. Of course, p itself is not a map of algebras; A4* is com-
mutative and C* is not.

Situations of this sort—maps which are not multiplicative but become so in
homology—are encountered elsewhere, and it has been observed that often
this phenomenon is associated with the existence of a whole family of “higher
homotopies™; cf. e.g. [6]. The maps of this sort form a category denoted by
DASH in [5], of which the category DA of differential algebras is a subcate-
gory. In this paper we shall prove the following
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Theorem. o can be extended to a map of DASH.
The theorem means that, writing p = p, we can find

0 A*® _, Cx i>1,

where A*® = 4*® ... @ A* (i times), and & denotes the tensor product
over the reals or rationals as the case may be, such that

() Dp; = ¥ (—1){glo; Rpi_p) — pr (A0 @ ¢ ® AU,
j=1
i) oy ®---Qaw;) = 0if i > 2 and one of the ’s is a constant O-form
(on each component).

Here Do, = d-p; + (—1)%p,-d, where we note that p; has degree —i + 1
and ¢ stands, generically, for multiplication. Thus

@la ® B) = a N\ B (exterior product) if @, B e A*(x)
= a U B (cup product) if &, B e C*(x) .

Fori=1,2 we get
Doy =0, Dp,=p¢— ¢(0.® p) .

The latter statement contains, of course, the classical result that H(p) is multi-
plicative. The main application which the author has in mind is the following:
Let E — X be afibration, and ¥ — X a map. Then, by a theorem of Eilenberg
and Moore [3] the cohomology of the induced space is given by the differential
Tor functor

Torge x, (C*Y,C*E) .
Now, consider the diagram

Cx(Y) C*X) C*(E)

T 1

AHY) —— AK(X) —> A*E)
| o e ]
M(Y) < M(X) —> M(B)

where = denotes the map of DASH given by our theorem, and M(X) the
“minimal algebra’ of Sullivan; cf. [4]. Since M(X) is not functorial, the dia-
grams @ and @ are not commutative; it is true, however, that they are
homotopy-commutative in the sense of the category DASH. Hence, by the
principal theorem of [5],

Torgw x, (C*, Y, CH(E)) «— Toryx, (M(Y), M(E))
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exists and is an isomorphism. In other words, all the calculations can be made
at the level of the minimal algebras. This provides a very direct approach to
Sullivan’s theory, the details of which will be discussed elsewhere.

The same remark is one way of justifying the use of the de Rham complex
in the proof of Theorem 2.1 in [1] by P. F. Baum and L. Smith.

Since p,; has degree —i + 1, p;[(A)" = 0if » < i~ 1, where (4“)" de-
notes the elements of dimension ». Thus, is dimension 0, p; = 0 if { > 1. This
is possible since p(ae N B) = pe U p,8 if «, 8 are O-forms, i.e., functions. We
shall now prove the existence of the p; by induction assuming that p; has been
determined for j < i, and finding p,|(4%™ by induction on n. As we noted,
0| (A" =0ifn<i-—1.

We shall use the machinery of (contravariant) acyclic models, which was
introduced (covariantly) by Eilenberg and MacLane [2]. In its basic idea the
proof is merely a technical elaboration of the argument given by Whitney for
the uniqueness of the cup product, [8]; see also [9, p. 143].

For any contravariant functor K: .9~ — vector spaces we define a new con-
travariant functor K: 9~ — vector spaces by

KX = [ {KOD,u},

where the product is over all maps u: M — X of 7, and M is a “model”, i.e.,
one of the standard simplexes 4*. If f: X — Y is a map, then K(f): K(Y) —
R(X) is defined by

K(H{m,, v} = {myu, u}

where u: M - X, v: M, —» 7Y, and m, ¢ K(M,).
If K,L:J — # are contravariant functors, and §: K — L is a transfor-
mation of functors, then we define the tranformation of functors §: K — L by

(x){m, u} = {6(M)m, u} .
For any contravariant functor K: 9~ — ¥~ we define @: K — K by
O(X)h = {K(wh, u} (he K(X)) .
We easily verify that
60 = 99 .
In particular, for the functors 4* and C* we define A* and C* by
(A9 = @, (€9 = C,

and we get differentials
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d:d* - 4*, d:Cx- ¢x.

Lemma 1. The fzfnctor C* is corepresentable, i.e., there is a transforma-
tion of functors ¥ . C* — C* such that U = the identity.
Note that we do NOT assert ¥d = 4¥.

Proof. We define ¥'(X) = C*(X) — C*(X) by
<¢-(X){mu’ u}a ’U> = <mw 1M,,> 5

where v: M, — X, and 1, denotes the identity map of M, regarded as a
singular chain. The verification of ¥® = identity is trivial.

Lemma 2. The functors AT (r > 1) are acyclic on models ; thus for each
model M there is a chain homotopy

Syt A(M) — AD(M)
such that
DSM = A(T) —~— &y »

where gy Is the augmentation ; S, and ey are only defined after a contraction

has been chosen for M.
The lemma is clear for r = 1 and then, for a general r, follows from the

well-known definition of the tensor product.
For each model M we choose, once and for all, an S,,. Now we define

S: A7(X) — AM(X)
by
S{wy, u} = {Sywy, 4} ,
where u: M — X. Clearly,
DS = 47 — ¢,

where &{w,, u} = {eyw., u}. Notice that S is a transformation of functors.
We now begin our main proof. We write the defining equations for p, as

pid = (—1{ —doi + T (=16, @ ;) — pe (47 @ @ 457}
= @, say.

We assume that p; is defined for j < i, and p; in dimension < n, where
n>i— 1, so that n > 1 since i > 2. Thus 8, is defined in dimension n — 1,
and we have the following diagram:
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Cn—z'+1
fa/
A(i),n—z_) A(i),n—l ___>A(i),n .
d d

By the inductive hypothesis, 6,d = 0.
Since everything is functorial, we get the diagram

N
Cn—i+1
A
g 1
; |
T ]Ei
1
S I
4@,n-2 A‘u‘) n—1 €—— A‘m 7
» s
A — —
d a

where §,d = 0. Now we define , = §,S and obtain

where we have used 6. = 0. This is clear for i > 2 since #, has degree
—i + 2. We also have

0, = —dp, + &, ® p) — 0,6,

which is zero in dimension O as was remarked before.
Now define p; on 4¥+* by

Pz’ = ?p.xz@ ’
and verify
0d = Ur,dd = Ur,d0 = V6,0 = 06, = 6,

as required.
It remains to check condition (ii) of the theorem. For the moment, say the
element

0o=0,® - Dw, e AYX), i>2,

is “special” if at leasto ne w; is a constant O-form. Now notice that if w is special
and p; satisfies the condition inductively, then #;w = 0 when o is special, as
can be easily verified from the formula. Also @(X)w = {u*w, u}, and if o is
special so is u*w = A¥(w)w. Hence @ sends special forms to special forms.
S, of a constant form is 0, from which we deduce easily that S,e is special
if w is special. Thus inductively ;@ = p,S@ will carry special forms to zero,
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and the same is true of p;. Hence the proof of our theorem is complete.
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